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Methods
To correctly simulate disorder‑driven dynamics with molecular dynamics over a 
vast compositional/configurational space an Allegro3 machine learnt 
interatomic potential was trained and deployed. Training datasets were 
generated across the compositional phase space and  the model refined via an 
active‑learning loop - delivering ab initio fidelity at practical computational 
cost.
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Dynamically:

Disorder reduces diffusive bottlenecks 
at shorter timescales - increasing 
conduction.

Vacancies promote conduction seen 
by in an increased ion hop frequency on 
Zn containing 4d(Br) sites.

Zn2+ blocks diffusion pathways more 
as Zn2+ concentration and disorder 
increase - decreasing conductivity.

More mobile Zn2+ persistently blocks Li+ pathways, compounding the 
suppression of Li+ transport and offsetting the gains expected from 
increased  Li+‑vacancy concentration and more uniform Li+ density.

Zn2+ repels Li+ and moves via Br‑centred 
4d sites, where it sits at larger Zn–Br 
separations that enable 4d→4d (Br→Br) 
hopping.

Increasing 4a/4d disorder:
 - More Br on 4d
 - Zn2+ is more mobile 
 - Zn2+ increasingly blocks transport
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Li6−2xZnxPS5Br: zinc doping
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Methods were validated on 
Li6−xPS5−xBrClx before Zn was 
introduced. 

With increasing halide content, the 
system becomes more Li-poor and 
exhibits greater 4a/4d site disorder. 
Given the strong correlations in these 
systems, the dc conductivity is 
computed via linear-response theory 
finding good agreement with 
experiment.
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As x increases, 4a/Br cages harden
and compress, resembling the 
unchanged 4d cages, yielding a more 
uniform Li+ distribution4.

This homogenisation, removes cage-
specific bottlenecks and enables 
smoother, more continuous Li-ion 
pathways5 - improving conductivity.

Li6−xPS5−xBrClx: an un-doped system
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As x increases, 4a(Br) cages harden
and compress, resembling the 
unchanged 4d cages, yielding a more 
uniform Li+ distribution4.

This homogenisation, removes cage-
specific bottlenecks and enables 
smoother, more continuous Li-ion 
pathways5 - improving conductivity.

Li6−xPS5−xBrClx: an un-doped system

Inter-cage Hop

Halide lithium argyrodites (Li6PS5X , X = Cl, Br, I) are a promising class of 
solid‑state electrolytes for next‑generation batteries, achieving 
room‑temperature ionic conductivities of 10-3–10-2 Scm-1 with comparatively 
wide electrochemical stability windows. 

Argyrodites show strong chemical tunability1: most prominently, anion disorder
between 4a (X–) and 4d (S2–) sites enhances Li‑cage connectivity and lowers 
migration barriers2; secondly, introducing Li vacancies (via aliovalent doping
or off‑stoichiometry) enables vacancy‑assisted transport, further boosting 
conductivity.
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Introduction

Recent work has found that Zn2+ addition to the argyrodite Li6−2xZnxPS5Br
increases 4a/4d disorder - boosting Li+-ion conductivity. However, 
excessive Zn2+ addition decreases conductivity, consistent with suspected 
Zn2+- induced blocking on the Li+ sub-lattice. 

The atomic-scale mechanism - and the precise origin of this suspected blocking 
- remains unresolved.

Doping Zn2+ ...

Increases Disorder:    Increases Conductivity

Increases  Vacancies:  Increases Conductivity

Increases  Zinc:          Decreases Conductivity?

Motivation
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