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Introduction Li,_ PS, BrCl: an un-doped system
Halide lithium argyrodites (Li.PS.X , X = CI, Br, |) are a promising class of oos| == Smuaes Methods were vaIi;_JIated on
solid-state  electrolytes  for next- generation  batteries,  achieving Lis ZS E’rG before Zn was
room-temperature ionic conductivities of 103-102 Scm™ with comparatively 00s introduce
wide electrochemical stability windows. 00 o _ _
z With increasing halide content, the
Argyrodites show strong chemical tunability’: most prominently, anion disorder 2oos system becomes more Li-poor and
between 4a (X) and 4d (S?*) sites enhances Li-cage connectivity and lowers exhibits greater 4a/4d site disorder.
Ay ) 3 3 : : S oal : o Given the strong correlations in these
migration barriers?; secondly, introducing Li vacancies (via aliovalent doping he d ductivity i
or off-stoichiometry) enables vacancy-assisted transport, further boosting 001 SYEEmE, Wi tle EEEERL] IS
conductivity. computed via linear-response theory
m Inter-cage Hop E 1 E 000 o <03 <05 finding good agreement with
(“\ Li-lon Diffusion W . 2 experiment.
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Doping Zn* ... £ f ¢ 3 . . .
zoe], : Li. . Zn PS_Br: zinc doping
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Increases Disorder:  Increases Conductivity S 0.6 =
£ . g Zn*t repels Li* and moves via Br-centred
Increases Vacancies: Increases Conductivity — § ** . 023, 4d sites, where it sits at larger Zn—Br
] . S02°® separations that enable 4d—4d (Br—Br)
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Increasing 4a/4d disorder:
Recent work has found that Zn?* addition to the argyrodite Li._, Zn PS Br - More Br on 4d
increases 4a/4d disorder - boosting Lit-ion conductnvnty “However,
excessive Zn?*t addition decreases conductivity, consistent with suspected
Zn?**- induced blocking on the Li* sub-lattice.

- Zn?*t is more mobile

- Zn?**+ increasingly blocks transport Zn Blocking 4d/Br Diffusion
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The atomic-scale mechanism - and the precise origin of this suspected blocking =

I Zn density
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To correctly simulate disorder-driven dynamics with molecular dynamics over a
vast compositional/configurational space an Allegro® machine learnt 51 ' o
interatomic potential was trained and deployed. Training datasets were w0 - .
generated across the compositional phase space and the model refined via an

active-learning loop - delivering ab initio fidelity at practical computational
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